document.write( "Question 1188400: 1. P ⊃ [ ( L v M ) ⊃ ( N • O ) ]
\n" ); document.write( "2. ( O v T ) ⊃ W / P ⊃ ( M ⊃ W )
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #820975 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( "Don't skip a space just after \"(\" or \"[\" and don't skip a space \r\n" );
document.write( "just before  \")\" or \"]\".  It looks confusing when you do. \r\n" );
document.write( "\r\n" );
document.write( "Since by exportation the conclusion P ⊃ (M ⊃ W) is \r\n" );
document.write( "equivalent to (P • M) ⊃ W, we will assume P • M for \r\n" );
document.write( "a conditional proof\r\n" );
document.write( "\r\n" );
document.write( "1. P ⊃ [(L v M) ⊃ (N • O)]\r\n" );
document.write( "2. (O v T) ⊃ W                              / P ⊃ (M ⊃ W), same as (P • M) ⊃ W\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "                      |3. P • M                   ACP\r\n" );
document.write( "                      |4. P                   3, Simplification\r\n" );
document.write( "                      |5. (L v M) ⊃ (N • O)   1,4, Modus ponens\r\n" );
document.write( "                      |6. M • P               3, Commutation\r\n" );
document.write( "                      |7. M                   6, Simplification\r\n" );
document.write( "                      |8. M v L               7, Addition\r\n" );
document.write( "                      |9. L v M               8, Commutation           \r\n" );
document.write( "                     |10. N • O               5,9 Modus ponens\r\n" );
document.write( "                     |11. O • N               10, Commutation\r\n" );
document.write( "                     |12. O                   11, Simplification\r\n" );
document.write( "                     |13. O v T               12, Addition\r\n" );
document.write( "                     |14. W                   2,13, Modus ponens\r\n" );
document.write( "15. (P • M) ⊃ W         lines 3-14         Conditional proof.\r\n" );
document.write( "16. P ⊃ (M ⊃ W)                            15, Exportation   \r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );