document.write( "Question 1188400: 1. P ⊃ [ ( L v M ) ⊃ ( N • O ) ]
\n" );
document.write( "2. ( O v T ) ⊃ W / P ⊃ ( M ⊃ W )
\n" );
document.write( "
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #820975 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "\r\n" ); document.write( "Don't skip a space just after \"(\" or \"[\" and don't skip a space \r\n" ); document.write( "just before \")\" or \"]\". It looks confusing when you do. \r\n" ); document.write( "\r\n" ); document.write( "Since by exportation the conclusion P ⊃ (M ⊃ W) is \r\n" ); document.write( "equivalent to (P • M) ⊃ W, we will assume P • M for \r\n" ); document.write( "a conditional proof\r\n" ); document.write( "\r\n" ); document.write( "1. P ⊃ [(L v M) ⊃ (N • O)]\r\n" ); document.write( "2. (O v T) ⊃ W / P ⊃ (M ⊃ W), same as (P • M) ⊃ W\r\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( " |3. P • M ACP\r\n" ); document.write( " |4. P 3, Simplification\r\n" ); document.write( " |5. (L v M) ⊃ (N • O) 1,4, Modus ponens\r\n" ); document.write( " |6. M • P 3, Commutation\r\n" ); document.write( " |7. M 6, Simplification\r\n" ); document.write( " |8. M v L 7, Addition\r\n" ); document.write( " |9. L v M 8, Commutation \r\n" ); document.write( " |10. N • O 5,9 Modus ponens\r\n" ); document.write( " |11. O • N 10, Commutation\r\n" ); document.write( " |12. O 11, Simplification\r\n" ); document.write( " |13. O v T 12, Addition\r\n" ); document.write( " |14. W 2,13, Modus ponens\r\n" ); document.write( "15. (P • M) ⊃ W lines 3-14 Conditional proof.\r\n" ); document.write( "16. P ⊃ (M ⊃ W) 15, Exportation \r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |