document.write( "Question 1189533: Solve in integer numbers 2^(x+1) = 3^y+2 - 3^y.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #820911 by ikleyn(52914)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Solve in integer numbers 2^(x+1) = 3^y+2 - 3^y.
\n" ); document.write( "~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Left  side of the given equation is  2^(x+1).\r\n" );
document.write( "\r\n" );
document.write( "Right side of the given equation is  9*3^y - 3^y = 8*3^y.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the given equation is\r\n" );
document.write( "\r\n" );
document.write( "    2^(x+1) = 8*3^y.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Due to uniqueness of decomposition integer numbers into the product of prime numbers, \r\n" );
document.write( "from the last equation we conclude\r\n" );
document.write( "\r\n" );
document.write( "    x + 1 = 3,  y = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  x = 2;  y = 0.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "====================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Writing by @MathLover1 in her preceding post is irrelevant to the problem and can not be considered as a solution.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For your peace in mind, simply ignore her post.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );