document.write( "Question 112539This question is from textbook
\n" );
document.write( ": Hello I'm given a Right Triangle EFG. EF being the hypotenuse with a altitude which is HG. Segment GF=20 and segment EF=25. The question is Find the length of HF.
\n" );
document.write( "I just can't seem to figure this one out I'm not having any trouble on any of the other ones. Well i hope my description is good enough, Thank You. \n" );
document.write( "
Algebra.Com's Answer #82073 by ilana(307)![]() ![]() ![]() You can put this solution on YOUR website! The trick to this is you need to realize that EFG and GFH are similar triangles. This is because the angle at F is shared by both and angles G and H are both right angles (an altitude meets the opposite side at a right angle). So the remaining angles, E and G, must be the same, too, to add to 180 degrees. \n" ); document.write( "(You could also use the angle, side, angle method of seeing similar triangles) \n" ); document.write( "With similar triangles, setting up a proportion helps you solve for the lengths. So GF/EF = HF/GF. Using the numbers we have, 20/25 = x/20. Cross multiply to get 25x=400, so x=16. That is the length of HF. \n" ); document.write( " |