document.write( "Question 1189325: A conic has an equation of an asymptote equal to 3x=4y. What is the equation of the conic having its center at
\n" );
document.write( "origin and its transverse axis equal to y=0.
\n" );
document.write( "a. 9x2-16y2 = 144
\n" );
document.write( "b. 16x2 - 9y2 = 144
\n" );
document.write( "c. 9y2 - 16x2 = 144
\n" );
document.write( "d. 16y2 - 9x2 = 144 \n" );
document.write( "
Algebra.Com's Answer #820676 by MathLover1(20850)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "check the first choice:\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "=> \n" ); document.write( "\n" ); document.write( "=> center ( \n" ); document.write( "\n" ); document.write( "The transverse axis is a line segment that passes through the center of the hyperbola and has vertices as its endpoints.\r \n" ); document.write( "\n" ); document.write( "The vertices ( \n" ); document.write( "\n" ); document.write( "so,\r \n" ); document.write( "\n" ); document.write( "( \n" ); document.write( "\n" ); document.write( "( \n" ); document.write( "\n" ); document.write( "so, vertices lie on x-axis, and \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For right-left hyperbola the asymptotes are:\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we need only positive\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this means, your answer is option a. \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |