document.write( "Question 1189323: Find the tangent line to the parabola x^2 = 6y + 10 through (7,5)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #820658 by ikleyn(52803)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Find the tangent lines to the parabola x^2 = 6y + 10 passing through the point (7,5), which lies outside the parabola. \n" ); document.write( "~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The final equations of the tangent lines are correct in the post by @Alan,\r \n" ); document.write( "\n" ); document.write( " but the logic of his solution is unclear to me.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " I tried to understand it, but failed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Therefore, I developed my own solution in a way as it SHOULD be done: \r \n" ); document.write( "\n" ); document.write( " in a way as my teachers and my textbooks taught me.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "An equation of the line passing through the point (7,5) is\r\n" ); document.write( "\r\n" ); document.write( " y-5 = m*(x-7),\r\n" ); document.write( "\r\n" ); document.write( "where \"m\" is the slope coefficient, or\r\n" ); document.write( "\r\n" ); document.write( " y = mx - 7m +5.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " +----------------------------------------------------------------+\r\n" ); document.write( " | The value of the slope \"m\" is unknown now, |\r\n" ); document.write( " | and the rest of the solution is to find the value of \"m\". |\r\n" ); document.write( " +-----------------------------------------------------------==---+\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Substitute this expression for y into the right side of the parabola formula\r\n" ); document.write( "\r\n" ); document.write( " x^2 = 6(mx - 7m +5) + 10.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "You will get\r\n" ); document.write( "\r\n" ); document.write( " x^2 - 6mx + 42m - 40 = 0. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The line is tangent to the parabola if and only if the quadratic equation (1) has a unique real root.\r\n" ); document.write( "\r\n" ); document.write( "It happens if and only if the discriminant of the equation is zero.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The discriminant is d = b^2 - 4ac; b= -6m; a= 1; c= 42m-40, so\r\n" ); document.write( "\r\n" ); document.write( " d = 36m^2 - 4(42m-40) = 36m^2 - 168m + 160.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore, to find \"m\", we need solve this quadratic equation\r\n" ); document.write( "\r\n" ); document.write( " 36m^2 - 168m + 160 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Find its solutions, using the quadratic formula. They are\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice that I edited the post to make the problem's formulation mathematically clear.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Your original formulation was far from to be perfect.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |