document.write( "Question 112530: find three consecutive numbers such that twice the square of the first number is 38 more than the product of the other two numbers. \n" ); document.write( "
Algebra.Com's Answer #82062 by checkley71(8403)![]() ![]() ![]() You can put this solution on YOUR website! LET X, (X+1) & (X+2) BE THE 3 CONSECUTIVE NUMBERS. \n" ); document.write( "2X^2=38+(X+1)(X+2) \n" ); document.write( "2X^2=38+X^2+3X+2 \n" ); document.write( "2X^2-X^2-3X-38-2=0 \n" ); document.write( "X^2-3X-40=0 \n" ); document.write( "(X-8)(X+5)=0 \n" ); document.write( "X-8=0 \n" ); document.write( "X=8 ANSWER. 8+1=9 8+2=10. \n" ); document.write( "X+5=0 \n" ); document.write( "X=-5 ANSWER. -5+1=-4 -5+2=-3. \n" ); document.write( "PROOF \n" ); document.write( "2(8)^2=38+(9*10) \n" ); document.write( "2*64=38+90 \n" ); document.write( "128=128 \n" ); document.write( "---------------------- \n" ); document.write( "2(-5)^2=38+(-4*-3) \n" ); document.write( "2*25=38+12 \n" ); document.write( "50=50 \n" ); document.write( " \n" ); document.write( " |