document.write( "Question 1188875: Use conditional proof or indirect proof as needed:
\n" );
document.write( "1. (x)[Rx⊃(Tx •∼Ex)]
\n" );
document.write( "2. (x)[(Qx • Rx)⊃Ex] / (x)(Rx⊃∼Qx) \n" );
document.write( "
Algebra.Com's Answer #820618 by Edwin McCravy(20054)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "You don't need all those x's and (x)'s. They just get in\r\n" ); document.write( "the way. And we know they're understood.\r\n" ); document.write( "\r\n" ); document.write( "Use conditional proof or indirect proof as needed:\r\n" ); document.write( "\r\n" ); document.write( "1. R ⊃ (T • ∼E) \r\n" ); document.write( "2. (Q • R) ⊃ E / R ⊃ ∼Q\r\n" ); document.write( "\r\n" ); document.write( "3. | R Assumption for Conditional proof\r\n" ); document.write( "4. | T • ∼E 1,3, Modus Ponens\r\n" ); document.write( "5. |~E • T 4, Commutation\r\n" ); document.write( "6. |~E 5, Simplification\r\n" ); document.write( "7. |~(Q • R) 2,6, Modus tollens\r\n" ); document.write( "8. |~Q ∨ ~R 7, DeMordan's law\r\n" ); document.write( "9. |~R ∨ ~Q 8, Commutation\r\n" ); document.write( "10. |~~R 3, Double negation\r\n" ); document.write( "11. |~Q 9,10, Disjunctive syllogism\r\n" ); document.write( "12. R ⊃ ∼Q lines 3-11 Conditional proof\r\n" ); document.write( "\r\n" ); document.write( "Edwin \n" ); document.write( " \n" ); document.write( " |