document.write( "Question 1189239: Given that is a factor of
evaluate the sum of the four roots of the equation
\n" );
document.write( "
Algebra.Com's Answer #820545 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Given that \n" ); document.write( "the sum of the four roots of the equation \n" ); document.write( "~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Notice that x^2-3x+2 = (x-2)*(x-1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "We are given that the polynomial x^4 + kx^3 - 10x^2 - 20x+24 is divisible by the polynomial x^2-3x+2 .\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Hence, the polynomial x^4 + kx^3 - 10x^2 - 20x+24 is divisible by (x-1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It means (the Remainder theorem) that the number x= 1 is the root of the polynomial x^4 + kx^3 - 10x^2 - 20x+24.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, we substitute x= 1 into this polynomial, and we get this equation for \"k\"\r\n" ); document.write( "\r\n" ); document.write( " 1^4 + k*1^3 - 10*1^2 - 20*1 + 24 = 0,\r\n" ); document.write( "\r\n" ); document.write( "or\r\n" ); document.write( "\r\n" ); document.write( " 1 + k - 10 - 20 + 24 = 0,\r\n" ); document.write( "\r\n" ); document.write( " k = 5.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now use the Vieta's theorem: the sum of the roots of the polynomial x^4 + kx^3 - 10x^2 - 20x + 24 is equal \r\n" ); document.write( "to the coefficient at x^3 with the opposite sign.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It gives that the sum of the roots of the polynomial x^4 + kx^3 - 10x^2 - 20x+24 is equal to -k, i.e. -5. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To tutor @MathTherapy: thanks for checking my post !\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |