document.write( "Question 1188269: find the equation of the tangents and normal to curve x^2 - y^2 = 15, parallel to 4x - y + 20 = 0. \n" ); document.write( "
Algebra.Com's Answer #819317 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! find the equation of the tangents and normal to curve x^2 - y^2 = 15, parallel to 4x - y + 20 = 0. \n" ); document.write( "------------------------------------ \n" ); document.write( "The slope of 4x - y + 20 = 0 is 4. m = 4 \n" ); document.write( "----------------- \n" ); document.write( "Find the slope of the hyperbola. \n" ); document.write( "--- \n" ); document.write( "x^2 - y^2 = 15 \n" ); document.write( "2x*dx - 2y*dy = 0 \n" ); document.write( "dy/dx = x/y \n" ); document.write( "---> x/y = 4 ---> y = x/4 \n" ); document.write( "----------- \n" ); document.write( "x^2 - y^2 = 15 \n" ); document.write( "x^2 - x^2/16 = 15 \n" ); document.write( "15x^2/16 = 15 \n" ); document.write( "15x^2 = 240 \n" ); document.write( "x^2 = 16, x = -4, +4 \n" ); document.write( "---- \n" ); document.write( "At x = -4 and +4, y^2 = 1 \n" ); document.write( "---> the points (-4,-1) and (4,1) \n" ); document.write( "================= \n" ); document.write( "Use y - y1 = m*(x-x1) (m=4) to find the equations for the lines tangent. \n" ); document.write( "----- \n" ); document.write( "Use y - y1 = m*(x-x1) (m = -1/4) to find the equations for the lines normal. \n" ); document.write( " \n" ); document.write( " |