document.write( "Question 1187610: Find the absolute extrema of the function on the closed interval.\r
\n" ); document.write( "\n" ); document.write( "f(x) = x^3 − 3/2x^2, [−3, 4]\r
\n" ); document.write( "\n" ); document.write( "maximum (x, y) = \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the absolute extrema of the function on the closed interval.\r
\n" ); document.write( "\n" ); document.write( "y = 3x^2/3 − 2x, [−1, 1]\r
\n" ); document.write( "\n" ); document.write( "maximum (x, y) =
\n" ); document.write( "

Algebra.Com's Answer #819210 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
Find the absolute extrema of the function on the closed interval.\r
\n" ); document.write( "\n" ); document.write( "\"%22f%28x%29%22\"\"%22%22=%22%22\"\"x%5E3+%E2%88%92+expr%283%2F2%29x%5E2\", [−3, 4]
\r\n" );
document.write( "\r\n" );
document.write( "The absolute extrema are either points at which the derivative is 0 or\r\n" );
document.write( "undefined, or the endpoints of the interval, -3 or 4.\r\n" );
document.write( "\r\n" );
document.write( "\"%22f%27%28x%29%22\"\"%22%22=%22%22\"\"3x%5E2-3x\" which we set = 0\r\n" );
document.write( "\r\n" );
document.write( "\"3x%5E2-3x\"\"%22%22=%22%22\"\"0\"\r\n" );
document.write( "\r\n" );
document.write( "\"3x%28x-3%29\"\"%22%22=%22%22\"\"0\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Points where derivative is 0 are (0,0) and (3,13.5)\r\n" );
document.write( "\r\n" );
document.write( "Endpoints:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So the absolute maximum point is (4,40)\r\n" );
document.write( "and the absolute minimum point is (-3,-40.5).\r\n" );
document.write( "
Find the absolute extrema of the function on the closed interval.
\r\n" );
document.write( "y = 3x^2/3 − 2x, [−1, 1]\r\n" );
document.write( "\r\n" );
document.write( "Do it the same way all by yourself.  This time one of the absolute extrema\r\n" );
document.write( "will be an an endpoint and the other at a point where the derivative is 0.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );