document.write( "Question 1187981: A cut-tail prime is a prime number that keeps giving prime numbers as its last digit is continually removed. For example, 37397 is a cut-tail prime because 37397 and 3739 and 373 and 37 and 3 are all primes. The number of three-digit cut-tail primes is\r
\n" );
document.write( "\n" );
document.write( "A)12 B)13 C)14 D)15 E)16 \n" );
document.write( "
Algebra.Com's Answer #819003 by ikleyn(52787)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " 14. ANSWER\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "See this Wikipedia article\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "https://en.wikipedia.org/wiki/Truncatable_prime\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "where ALL 83 EXISTING right-truncatable primes are listed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Of them, there are exactly 14 three-digit numbers.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " // Kind of useless knowledge which gives NOTHING and teaches NOTHING.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |