document.write( "Question 1187235: The first three terms of a geometric progression are k + 15,k and k - 12 respectively, find the value of k and the sum to infinity. \n" ); document.write( "
Algebra.Com's Answer #818181 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "The first three terms of a geometric progression are k + 15,k and k - 12 respectively,
\n" ); document.write( "find the value of k and the sum to infinity.
\n" ); document.write( "~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Since the first three terms of a geometric progression are k + 15,k and k - 12 respectively, \r\n" );
document.write( "\r\n" );
document.write( "we have this proportion\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"%28k-12%29%2Fk\" = \"k%2F%28k%2B15%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Cross multiply, simplify and find k\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    (k-12)*(k+15) = k^2\r\n" );
document.write( "\r\n" );
document.write( "     k^2 - 12k + 15k - 180 = k^2\r\n" );
document.write( "\r\n" );
document.write( "           3k              = 180\r\n" );
document.write( "\r\n" );
document.write( "            k              = 180/3 = 60.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The first three terms are  75, 60, 48.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The common dofference is  r = \"60%2F75\" = \"4%2F5\" = 0.8.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The sum to infinity is  S = \"a%5B1%5D%2F%281-r%29\" = \"75%2F%281-0.8%29\" = \"75%2F0.2\" = 375.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );