document.write( "Question 1186415: f(x) = x^3 - 2 and g(x) = x^2 - 5x. Solve gf(x) = 6 \n" ); document.write( "
Algebra.Com's Answer #817321 by ikleyn(52754)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The polynomial equation gf(x) = 6, written exactly as presented in this post, has the form\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " (x^2-5x)*(x^3-2) = 6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "which is the same as \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " x^5 - 5x^3 - 2x^2 + 4 = 0 (after FOIL and combining like terms).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "As an authoritative online calculator \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "https://www.mathportal.org/calculators/solving-equations/polynomial-equation-solver.php \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "says, this equation HAS NO rational roots that can be found using Rational Root Theorem.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "They only can be found using numerical methods.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Approximate values are\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " x1 = 0.84379\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " x2 = −2.1159\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " x3 = 2.35435\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " x4 = −0.54112 + 0.81167*i\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " x5 = −0.54112 − 0.81167*i\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "From the other side, if to suppose that the correct form of the given equation is different, namely, is \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " gof(x) = 0 (1) (composition of polynomial functions instead of their product),\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "then the EXACT solution can be obtained ANALYTICALLY.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This analytic solution is presented in other my post at this forum, where I solved this problem couples of days ago. See the link\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "https://www.algebra.com/algebra/homework/playground/test.faq.question.1186259.html\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For your convenience, I copy/paste this solution here AGAIN.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "/////////////////////\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Introduce new variable y = x^3 - 2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then the given equation (1) takes the form\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " y^2 - 5y = 6\r\n" ); document.write( "\r\n" ); document.write( "or\r\n" ); document.write( "\r\n" ); document.write( " y^2 - 5y - 6 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Factor left side\r\n" ); document.write( "\r\n" ); document.write( " (y-6)*(y+1) = 0,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "which gives the roots y= 6 and y= -1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "If y= 6, then x^3 - 2 = 6, x^3 = 6 + 2 = 8, which implies x =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |