document.write( "Question 1186054: This for a Abstract Algebra class\r
\n" );
document.write( "\n" );
document.write( "Assume that φ is a homomorphism from the group G to G′. Prove that if K is any subgroup of G′, then φ−1(K) = {a ∈ G | φ(a) ∈ K} is a subgroup of G. \n" );
document.write( "
Algebra.Com's Answer #817043 by robertb(5830)![]() ![]() You can put this solution on YOUR website! Let a, b ∈ \n" ); document.write( "\n" ); document.write( "===> \n" ); document.write( "\n" ); document.write( "Now \n" ); document.write( "\n" ); document.write( "===> \n" ); document.write( "\n" ); document.write( "Now let a ∈ \n" ); document.write( "\n" ); document.write( "===> \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "===> \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "===> \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since for any element a, b ∈ \n" ); document.write( "\n" ); document.write( "----------------------------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "The conclusion can also be obtained by showing that if a, b ∈ \n" ); document.write( " \n" ); document.write( " |