document.write( "Question 1186053: This a Abstract Algebra class\r
\n" ); document.write( "\n" ); document.write( "Let G=⟨a⟩ be a cyclic group of order10. Define φ:Z→G by φ(n)=a^n for all n∈Z. Assume that φ is a homomorphism. Find kerφ.
\n" ); document.write( "

Algebra.Com's Answer #816933 by ikleyn(52946)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "This a Abstract Algebra class
\n" ); document.write( "Let G=⟨a⟩ be a cyclic group of order10. Define φ:Z→G by φ(n)=a^n for all n∈Z.
\n" ); document.write( "Assume that φ is a homomorphism. Find kerφ.
\n" ); document.write( "~~~~~~~~~~~~~~~`\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "The group G is presented as  G = (a) in the post.\r\n" );
document.write( "\r\n" );
document.write( "Also, from the context, G is a multiplicative group, regarding its operation.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It means that element \"a\" of the group G is the generator of the cyclic group G.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In turn, it means that  \"a%5E10\" = 1  (the unit element of the group G),  \r\n" );
document.write( "\r\n" );
document.write( "while  the elements  \"a%5Ek\"  at k = 1, 2, 3, . . . , 9 are all different and not equal to the unit element of the group.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, kerφ is the set of all integers in Z that are multiples of 10:   { . . . , -20, -10, 0, 10, 20, . . . }.    ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved and explained.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We should not  \"assume\"  that φ ,  defined in this way,  is a homomorphism.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It  REALLY  IS  the homomorphism.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );