document.write( "Question 1186052:
\n" ); document.write( "Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places.\r
\n" ); document.write( "\n" ); document.write( "P(X≥9), n=10, p=0.8
\n" ); document.write( "

Algebra.Com's Answer #816929 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
binomial distribution formula is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p(x) = p^x * q^(n-x) * c(n,x)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "q = 1 - p\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "c(n,x) = n! / (x! * (n-x)!)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 10 and p = .8
\n" ); document.write( "q = 1 - .8 = .2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p(9) = .8^9 * .2^1 * 10 = .268435456.
\n" ); document.write( "p(10) = .8^10 * .1^0 * 1 = .107374182\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the full set of probabilities are shown below.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the sum of all probabilities is equal to 1, as it should be.
\n" ); document.write( "
\n" ); document.write( "
\n" );