document.write( "Question 1185559: Q: Let the vertices of triangle be (0, 0), (3, 0) and (0, 4). Find its:
\n" );
document.write( "(i) Orthocenter (ii) Radius of the inscribed circle \n" );
document.write( "
Algebra.Com's Answer #816390 by ikleyn(52803)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Q: Let the vertices of triangle be (0, 0), (3, 0) and (0, 4). Find its: \n" ); document.write( "(i) Orthocenter (ii) Radius of the inscribed circle \n" ); document.write( "~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "You can make a sketch, or, like me, simply look attentively at coordinates of the vertices.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then you will notice that the triangle is a RIGHT-ANGLED triangle with the right angle vertex \r\n" ); document.write( "at the origin of the coordinate system.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "THEREFORE, the othocenter (the intersection point of altitudes) is the origin point (0,0).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Next, in a right angled triangle, the radius of incribed circle is\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " r =\r \n" ); document.write( "\n" ); document.write( "Solved, answered, explained and completed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |