document.write( "Question 1184414: Determine if the given argument is valid or not: \r
\n" ); document.write( "\n" ); document.write( "P -> Q
\n" ); document.write( " R -> S
\n" ); document.write( "~ Qv ~ S
\n" ); document.write( "(the 3 dots that looks like a triangle) ~ Pv ~ R
\n" ); document.write( "

Algebra.Com's Answer #814988 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!
Determine if the given argument is valid or not: \r
\n" ); document.write( "\n" ); document.write( "P -> Q
\n" ); document.write( " R -> S
\n" ); document.write( "~ Qv ~ S
\n" ); document.write( "(the 3 dots that looks like a triangle) ~ Pv ~ R
\n" ); document.write( "-----------\r
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Determine if the given argument is valid or not: \r
\n" ); document.write( "\n" ); document.write( "1. P -> Q Premise
\n" ); document.write( "2. R -> S Premise
\n" ); document.write( "3. ~Q v ~S Premise
\n" ); document.write( "// ∴ ~P v ~R
\n" ); document.write( "4.:: ~Q Conditional Proof (CP) assumption #1
\n" ); document.write( "5.:: ~P 4,1 Modus Tollens (MT)
\n" ); document.write( "6.:: ~S CP assumption #2
\n" ); document.write( "7.:: ~R 6,2 MT
\n" ); document.write( "8.:: ~P v ~R 4-7 Proof by Cases (PBC)
\n" ); document.write( "9. ~P v ~R 4-8 CP\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The argument is VALID\r
\n" ); document.write( "\n" ); document.write( "What the proof shows is this: if not Q (~Q) then we get ~P. If on the other hand we have ~S, we get ~R, therefore, if either ~Q or ~S then ~P is true or ~R is true (or both).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "
\n" );