document.write( "Question 1184367: A hyperbola has vertices (±5,0) and one focus at (6,0). What is the equation of the hyperbola in standard form? \n" ); document.write( "
Algebra.Com's Answer #814951 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "vertices: ( \"5\",\"0\") ,( \"5\",\"0\") \r
\n" ); document.write( "\n" ); document.write( "=>major (transverse) axis length: \"2a=10\" =>\"a=5\"\r
\n" ); document.write( "\n" ); document.write( "one focus at (\"6\",\"0\")=> other focus is at (\"-6\",\"0\") and \"c=6\"\r
\n" ); document.write( "\n" ); document.write( "=> center: (\"0\",\"0\")\r
\n" ); document.write( "\n" ); document.write( "then, \"b%5E2=c%5E2-a%5E2\"
\n" ); document.write( "\"b%5E2=6%5E2-5%5E2\"
\n" ); document.write( "\"b%5E2=36-25\"
\n" ); document.write( "\"b%5E2=11\"\r
\n" ); document.write( "\n" ); document.write( "and, the equation of the hyperbola is:\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Fa%5E2-y%5E2%2Fb%5E2=1\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2F25-y%5E2%2F11=1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );