document.write( "Question 1184286: If four distinct points (2k, 3k), (2, 0), (0, 3) and (0, 0) lie on circle then which condition is true from the following:
\n" );
document.write( "A- k < 0
\n" );
document.write( "B- 0 < k < 1
\n" );
document.write( "C- k = 1
\n" );
document.write( "D- k > 1 \n" );
document.write( "
Algebra.Com's Answer #814827 by ikleyn(52794)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "If four distinct points (2k, 3k), (2, 0), (0, 3) and (0, 0) lie on circle then which condition is true from the following: \n" ); document.write( "A- k < 0 \n" ); document.write( "B- 0 < k < 1 \n" ); document.write( "C- k = 1 \n" ); document.write( "D- k > 1 \n" ); document.write( "~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Straight line segment connecting the points (2,0) and (0,0) is horizontal y= 0;\r\n" ); document.write( "\r\n" ); document.write( " hence, the center of the circle lies at the perpendicular bisector x = 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Straight line segment connecting the points (0,3) and (0,0) is vertical x= 0;\r\n" ); document.write( "\r\n" ); document.write( " hence, the center of the circle lies at the perpendicular bisector y = 1.5.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " It implies that the center of the circle is the point (1,1.5).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus we see, that three points (0,0) (at the circle), (1.1.5) (the circle center) and (2k,3k) (at the circle) all lie \r\n" ); document.write( "\r\n" ); document.write( "on the same straight line y =\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solved, answered and explained.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |