document.write( "Question 1183867: The polynomial of degree 5, P(x) has a leading coefficient 1, has roots of multiplicity 2 at x=5 and x=0, and a root of multiplicity 1 at x=-5. find a possible formula for P(x) \n" ); document.write( "
Algebra.Com's Answer #814356 by Solver92311(821) You can put this solution on YOUR website! \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The set of all 5th-degree polynomials with real coefficients that have this set of zeros can be described as:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Where \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "is a valid possible formula for \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " \r\n" ); document.write( "\n" ); document.write( "From \n" ); document.write( "I > Ø \n" ); document.write( " |