document.write( "Question 1183613: The expression ax^3 + bx^2 - 5x + 2a is exactly divisible by x^2 - 3x - 4. Calculate the value of a and of b and factorise the expression completely. \n" ); document.write( "
Algebra.Com's Answer #814028 by ikleyn(52944) You can put this solution on YOUR website! . \n" ); document.write( "The expression ax^3 + bx^2 - 5x + 2a is exactly divisible by x^2 - 3x - 4. \n" ); document.write( "Calculate the value of a and of b and factorise the expression completely. \n" ); document.write( "~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Tutor @KMST provided very detailed long solution, covering different possible options.\r \n" ); document.write( "\n" ); document.write( " I will try to give shorter solution in hope that it has its own charm.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "The trinomial x^2 - 3x - 4 is factorable: x^2 - 3x - 4 = (x-4)*(x+1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It means that the given polynomial of the degree 3, ax^3 + bx^2 - 5x + 2a, is divisible \r\n" ); document.write( "by both binomials (x-4) and (x+1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Due to the Remainder theorem, it means that the values x= 4 and x= -1 are the roots of that polynomial.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, we substitute the values x= 4 and x= -1 into the given polynomial, equate it to zero and\r\n" ); document.write( "obtain two equations for the unknown coefficients \"a\" and \"b\"\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " a*4^3 + b*4^2 - 5*4 + 2a = 0 (1)\r\n" ); document.write( "\r\n" ); document.write( " a*(-1)^3 + b*1^2 - 5*(-1) + 2a = 0 (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Simplifying, you get\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 64a + 16b - 20 + 2a = 0 (1')\r\n" ); document.write( "\r\n" ); document.write( " -a + b + 5 + 2a = 0 (2')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Simplifying further, you get\r\n" ); document.write( "\r\n" ); document.write( " 66a + 16b = 20 (1'')\r\n" ); document.write( "\r\n" ); document.write( " a + b = -5 (2'')\r\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "After solving the system, you get a= 2, b= -7.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now the problem requires to find the third linear binomial, which is a third divisor to the given polynomial.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Use the Vieta's theorem: the sum of the roots is equal to\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |