document.write( "Question 1183579: Find the domain of the function f:\theta \rightarrow \left(\frac{\tan \theta \:\:}{2\sin \theta \:-\cos \theta }\right)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #813972 by ikleyn(52794)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "If the function is  f(t) = \"tan%28t%29%2F%28sin%28t%29-cos%28t%29%29\", then\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    (a)  the numerator  tan(t) is defined everywhere except t = \"pi%2F2+%2B+k%2Api\",  k = 0, +/-1, +/-2, . . . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    (b)  the denominator is defined everywhere and is not zero, except of \r\n" );
document.write( "\r\n" );
document.write( "         the points t such that  sin(t) = cos(t),  or  tan(t) = 1,  that are  t = \"pi%2F4+%2B+k%2Api\",  k = 0, +/-1, +/-2, . . . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "THEREFORE, the given function domain is the set of all real numbers except\r\n" );
document.write( "\r\n" );
document.write( "t = \"pi%2F2+%2B+k%2Api\",  k = 0, +/-1, +/-2, . . .  and  t = \"pi%2F4+%2B+k%2Api\",  k = 0, +/-1, +/-2, . . . \r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );