Algebra.Com's Answer #813954 by ikleyn(52794)  You can put this solution on YOUR website! . \n" );
document.write( "Does the series \n" );
document.write( "(1/√(n^2+1^2) + 2/√(n^2+2^2) +...+(n-1)/√(n^2+(n-1)^2)+ n/√(n^2+n^2))/n \n" );
document.write( "converge as n goes to infinity? If it does, what is the sum? \n" );
document.write( "~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " This problem is not for beginning Calculus students. \r \n" );
document.write( "\n" );
document.write( " It is for mature/advanced Calculus students.\r \n" );
document.write( "\n" );
document.write( " Therefore, I will give my solution without going into details, assuming that the reader has an adequate level.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "The sum is\r\n" );
document.write( "\r\n" );
document.write( " = . (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Each term under the sum symbol can be estimated this way\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " <= = from the top, (2)\r\n" );
document.write( "\r\n" );
document.write( "and\r\n" );
document.write( "\r\n" );
document.write( " >= = from the bottom, (3)\r\n" );
document.write( "\r\n" );
document.write( "or \r\n" );
document.write( "\r\n" );
document.write( " <= <= . (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It gives, in turn, the following estimations for the entire sums \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " <= <= . (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next, each sum contains the sum of arithmetic progression 1 + 2 + 3 + . . . + n = ,\r\n" );
document.write( "\r\n" );
document.write( "therefore, = = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From this point, estimations (5) can be re-written\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " <= <= . (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the terms are asymptotically between and .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " The sequence is, actually, monotonically DECREASING sequence.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From the first glance, it seems to be unexpected statement, but it is true and it can be strictly established formally.\r\n" );
document.write( "\r\n" );
document.write( "Therefore, of the two estimations (6) from the top and from the bottom, the only BOTTOM estimation makes sense for us now.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we have the monotonically decreasing sequence limited by the value from the bottom --- THEREFORE,\r\n" );
document.write( "\r\n" );
document.write( " +--------------------------------------------+\r\n" );
document.write( " | the sequence is converged. |\r\n" );
document.write( " +--------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |