document.write( "Question 1183523: rewrite: y=2sin(πt) - 3cos(πt) in y=Asin(Bt + C) form, using sum formula \n" ); document.write( "
Algebra.Com's Answer #813896 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "I'm going to use this identity \n" ); document.write( "sin(A+B) = sin(A)cos(B) + cos(A)sin(B) \n" ); document.write( "to say the following: \n" ); document.write( "2*sin(pi*t) - 3*cos(pi*t) = A*sin(Bt + C) \n" ); document.write( "2*sin(pi*t) - 3*cos(pi*t) = A*(sin(Bt)*cos(C) + cos(Bt)*sin(C)) \n" ); document.write( "2*sin(pi*t) - 3*cos(pi*t) = A*sin(Bt)*cos(C) + A*cos(Bt)*sin(C) \n" ); document.write( "2*sin(pi*t) - 3*cos(pi*t) = A*cos(C)*sin(Bt) + A*sin(C)*cos(Bt)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's highlight a pair of matching terms on either side. I'll use red to do so \n" ); document.write( "2*sin(pi*t) - 3*cos(pi*t) = A*cos(C)*sin(Bt) + A*sin(C)*cos(Bt)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Based on those highlighted items, we know that \n" ); document.write( "2*sin(pi*t) = A*cos(C)*sin(Bt) \n" ); document.write( "which must lead to \n" ); document.write( "A*cos(C) = 2 \n" ); document.write( "B = pi\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The non-highlighted items on either side of that equation lead us to \n" ); document.write( "-3*cos(pi*t) = A*sin(C)*cos(Bt) \n" ); document.write( "which leads to \n" ); document.write( "A*sin(C) = -3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To summarize: \n" ); document.write( "A*sin(C) = -3 \n" ); document.write( "A*cos(C) = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Squaring both sides for each equation yields \n" ); document.write( "A^2*sin^2(C) = 9 \n" ); document.write( "A^2*cos^2(C) = 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Add up those equations and solve for A \n" ); document.write( "A^2*sin^2(C)+A^2*cos^2(C) = 9+4 \n" ); document.write( "A^2*(sin^2(C)+cos^2(C)) = 13 \n" ); document.write( "A^2*1 = 13 \n" ); document.write( "A^2 = 13 \n" ); document.write( "A = sqrt(13)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can then update the equations \n" ); document.write( "A*sin(C) = -3 \n" ); document.write( "A*cos(C) = 2 \n" ); document.write( "into this \n" ); document.write( "sqrt(13)*sin(C) = -3 \n" ); document.write( "sqrt(13)*cos(C) = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Pick any of those latter two equations to solve for C. \n" ); document.write( "sqrt(13)*sin(C) = -3 \n" ); document.write( "sin(C) = -3/sqrt(13) \n" ); document.write( "C = arcsin(-3/sqrt(13)) \n" ); document.write( "C = -0.98279372324732 \n" ); document.write( "The value is approximate. Your calculator needs to be in radian mode. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, we have \n" ); document.write( "y = 2*sin(pi*t) - 3*cos(pi*t) \n" ); document.write( "turn into \n" ); document.write( "y = sqrt(13)*sin(pi*t - 0.9827937232473) \n" ); document.write( "which is in the form y = A*sin(Bt + C)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Final Answer: \n" ); document.write( "y = sqrt(13)*sin(pi*t - 0.9827937232473) \n" ); document.write( "This equation is approximate \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |