document.write( "Question 1183507: F → (O • B), S ↔ ~B, , W ↔ ~S, therefore F → W
\n" ); document.write( "to demonstrate the validity of the argument. Your proof may utilize any of the Rules of Inference or Equivalence Rules given in Chapter 8.
\n" ); document.write( "

Algebra.Com's Answer #813863 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!
I will show you by way of a conditional proof. In a conditional proof, you make assumptions and see where the premises take you. Only the conclusion(s) of the conditional portion (which are prefixed with ::) can be carried into the main argument.\r
\n" ); document.write( "\n" ); document.write( "

\n" ); document.write( "1. F → (O • B) Premise
\n" ); document.write( "2. S ↔ ~B Premise
\n" ); document.write( "3. W ↔ ~S Premise
\n" ); document.write( "// therefore F → W
\n" ); document.write( "4.:: F Conditional Proof (CP) assumption
\n" ); document.write( "5.:: O • B 4,1 Modus Ponens (MP)
\n" ); document.write( "6.:: B 5 Simplification (SIMP)
\n" ); document.write( "7.:: S --> ~B 2 Biconditional elimination
\n" ); document.write( "8.:: ~S 6,7 Modus Tollens (MT)
\n" ); document.write( "9 :: ~S --> W 3 Biconditional elimination
\n" ); document.write( "10.:: W 8,9 MP
\n" ); document.write( "11.:: F --> W 4-10 CP
\n" ); document.write( "12. F --> W 4-11 CP (discharges CP assumptions)\r
\n" ); document.write( "\n" ); document.write( "Proof complete\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "
\n" );