document.write( "Question 1183444: The vertices of Triangle DEF are D=(-4,4), E=(0,4), and F=(6,6). Use Matrix multiplication to reflect Triangle DEF across the x-axis. Draw the pre-image and image in a coordinate plane. \n" ); document.write( "
Algebra.Com's Answer #813811 by Solver92311(821)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Convert each of the ordered pairs to a single column matrix: \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then multiply the reflection across the \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For example, for point D: (-4,4):\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence D': (-4,-4)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can do the other two yourself.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " ![]() \n" ); document.write( "\n" ); document.write( "From \n" ); document.write( "I > Ø \n" ); document.write( " |