document.write( "Question 1183390: given set Z(26) = {0,1,2,3,...25}
\n" );
document.write( "Let a and b be integers. Consider the function f: Z(26) -> Z(26) defined by f(x) = ax + b (mod 26).
\n" );
document.write( "a)Prove that f(x) = 3x + b is bijective for any b.
\n" );
document.write( "b) find all the values of a for which the function f is bijective. \n" );
document.write( "
Algebra.Com's Answer #813693 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Z(26) is the residue ring modulo 26.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " +------------------------------------------------------------------+\r\n" ); document.write( " | Since you use this denoting, I assume that you are familiar |\r\n" ); document.write( " | with the term \"the residue ring modulo 26\" |\r\n" ); document.write( " +------------------------------------------------------------------+\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "and with all other associated terms.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The map f : x ----> 3x + b is the bijective for any \"b\", because 3 mod 26 is an invertible element of the ring Z(26).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Indeed, in this ring 3*9 = 1 (since 3*9 = 27 = 1 mod 26); so, the element \"9\" of the ring Z(26) is inverse to the element \"3\".\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It is the answer to question (a).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The answer to question (b) is \"any number / (element of Z(26) ), which is mutually prime with /(or to) the number 26 \".\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "For example, the elements \"1\", \"3\", \"5\", \"7\", \"9\", \"11\" satisfy this criterion; \r\n" ); document.write( "\r\n" ); document.write( "the elements \"2\", \"4\", \"6\", . . . , \"13\" do not satisfy the criterion.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I intently presented the solution in terms of the ring theory, because your post was formulated in these terms.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |