document.write( "Question 1183381: Let n ∈ N and B is a n × n matrice with real entries and has determinant 1. Show that there exist n × n matrices
\n" );
document.write( "K, A and N such that B = KAN. \n" );
document.write( "
Algebra.Com's Answer #813670 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Surely, for any nxn-matrix B there are nxn-matrices K, A and N such that B = KAN.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Simply take A = B, K = I (the identity matrix), N = I.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "//////////////\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In your post, you missed some important properties of matrices A, B, K and N, that make the problem SPECIAL.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "As it is worded in your post, the statement is TRIVIAL.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It is valid for any square nxn-matrix B, independently of its determinant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, twice and thrice check with your source.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The term \"matrice\" in English is \"matrix\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use \"matrix\" for single.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use \"matrices\" for plural.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Happy learning (!)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |