document.write( "Question 111458: Use a special product formula to factor the perfect square trinomial.
\n" ); document.write( "81x^2 - 144x + 64
\n" ); document.write( "

Algebra.Com's Answer #81292 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "
Solved by pluggable solver: Factoring using the AC method (Factor by Grouping)


Looking at the expression \"81x%5E2-144x%2B64\", we can see that the first coefficient is \"81\", the second coefficient is \"-144\", and the last term is \"64\".



Now multiply the first coefficient \"81\" by the last term \"64\" to get \"%2881%29%2864%29=5184\".



Now the question is: what two whole numbers multiply to \"5184\" (the previous product) and add to the second coefficient \"-144\"?



To find these two numbers, we need to list all of the factors of \"5184\" (the previous product).



Factors of \"5184\":

1,2,3,4,6,8,9,12,16,18,24,27,32,36,48,54,64,72,81,96,108,144,162,192,216,288,324,432,576,648,864,1296,1728,2592,5184

-1,-2,-3,-4,-6,-8,-9,-12,-16,-18,-24,-27,-32,-36,-48,-54,-64,-72,-81,-96,-108,-144,-162,-192,-216,-288,-324,-432,-576,-648,-864,-1296,-1728,-2592,-5184



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to \"5184\".

1*5184 = 5184
2*2592 = 5184
3*1728 = 5184
4*1296 = 5184
6*864 = 5184
8*648 = 5184
9*576 = 5184
12*432 = 5184
16*324 = 5184
18*288 = 5184
24*216 = 5184
27*192 = 5184
32*162 = 5184
36*144 = 5184
48*108 = 5184
54*96 = 5184
64*81 = 5184
72*72 = 5184
(-1)*(-5184) = 5184
(-2)*(-2592) = 5184
(-3)*(-1728) = 5184
(-4)*(-1296) = 5184
(-6)*(-864) = 5184
(-8)*(-648) = 5184
(-9)*(-576) = 5184
(-12)*(-432) = 5184
(-16)*(-324) = 5184
(-18)*(-288) = 5184
(-24)*(-216) = 5184
(-27)*(-192) = 5184
(-32)*(-162) = 5184
(-36)*(-144) = 5184
(-48)*(-108) = 5184
(-54)*(-96) = 5184
(-64)*(-81) = 5184
(-72)*(-72) = 5184


Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-144\":



\n" ); document.write( "
First NumberSecond NumberSum
151841+5184=5185
225922+2592=2594
317283+1728=1731
412964+1296=1300
68646+864=870
86488+648=656
95769+576=585
1243212+432=444
1632416+324=340
1828818+288=306
2421624+216=240
2719227+192=219
3216232+162=194
3614436+144=180
4810848+108=156
549654+96=150
648164+81=145
727272+72=144
-1-5184-1+(-5184)=-5185
-2-2592-2+(-2592)=-2594
-3-1728-3+(-1728)=-1731
-4-1296-4+(-1296)=-1300
-6-864-6+(-864)=-870
-8-648-8+(-648)=-656
-9-576-9+(-576)=-585
-12-432-12+(-432)=-444
-16-324-16+(-324)=-340
-18-288-18+(-288)=-306
-24-216-24+(-216)=-240
-27-192-27+(-192)=-219
-32-162-32+(-162)=-194
-36-144-36+(-144)=-180
-48-108-48+(-108)=-156
-54-96-54+(-96)=-150
-64-81-64+(-81)=-145
-72-72-72+(-72)=-144




From the table, we can see that the two numbers \"-72\" and \"-72\" add to \"-144\" (the middle coefficient).



So the two numbers \"-72\" and \"-72\" both multiply to \"5184\" and add to \"-144\"



Now replace the middle term \"-144x\" with \"-72x-72x\". Remember, \"-72\" and \"-72\" add to \"-144\". So this shows us that \"-72x-72x=-144x\".



\"81x%5E2%2Bhighlight%28-72x-72x%29%2B64\" Replace the second term \"-144x\" with \"-72x-72x\".



\"%2881x%5E2-72x%29%2B%28-72x%2B64%29\" Group the terms into two pairs.



\"9x%289x-8%29%2B%28-72x%2B64%29\" Factor out the GCF \"9x\" from the first group.



\"9x%289x-8%29-8%289x-8%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



\"%289x-8%29%289x-8%29\" Combine like terms. Or factor out the common term \"9x-8\"



\"%289x-8%29%5E2\" Condense the terms.



===============================================================



Answer:



So \"81%2Ax%5E2-144%2Ax%2B64\" factors to \"%289x-8%29%5E2\".



In other words, \"81%2Ax%5E2-144%2Ax%2B64=%289x-8%29%5E2\".



Note: you can check the answer by expanding \"%289x-8%29%5E2\" to get \"81%2Ax%5E2-144%2Ax%2B64\" or by graphing the original expression and the answer (the two graphs should be identical).

\n" ); document.write( "
\n" ); document.write( "
\n" );