document.write( "Question 111428: In a two-digit number, the tens digit is 3 less than twice the ones digit. The number is 27 more than the number obtained by reversing the digits. What is the given number? \n" ); document.write( "
Algebra.Com's Answer #81272 by edjones(8007)\"\" \"About 
You can put this solution on YOUR website!
Let t=the tens digit. u=the units digit
\n" ); document.write( "A) t=2u-3
\n" ); document.write( "B) t*10+u=u*10+t+27
\n" ); document.write( ".
\n" ); document.write( "B) 10(2u-3)+u=10u+2u-3+27 replace t with 2u-3
\n" ); document.write( "20u-30+u=12u+24
\n" ); document.write( "21u-30=12u+24
\n" ); document.write( "9u=54 add 30-12u to each side
\n" ); document.write( "u=6 divide each side by 9
\n" ); document.write( ".
\n" ); document.write( "A) t=2*6-3
\n" ); document.write( "t=9
\n" ); document.write( ".
\n" ); document.write( "the number is 96
\n" ); document.write( ".
\n" ); document.write( "Check:
\n" ); document.write( "96-69=27
\n" ); document.write( "
\n" );