\r\n" );
document.write( "The potential zeros have numerators which are divisors of the last term in\r\n" );
document.write( "absolute value, 21 and denominators which are divisors of the leading\r\n" );
document.write( "coefficient 1. So all potential divisors are: \r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Try 1\r\n" );
document.write( "\r\n" );
document.write( "1 | 1 0 -21 -20\r\n" );
document.write( " | 1 1 -20 \r\n" );
document.write( " 1 1 -20 -40\r\n" );
document.write( "\r\n" );
document.write( "That left remainder -40, not 0, so we try the next one, -1\r\n" );
document.write( "\r\n" );
document.write( "-1 | 1 0 -21 -20\r\n" );
document.write( " | -1 1 20 \r\n" );
document.write( " 1 -1 -20 0\r\n" );
document.write( "\r\n" );
document.write( "That left remainder 0, so -1 is a zero, and (x+1) is a factor.\r\n" );
document.write( "The other three numbers on the bottom row give us the coefficients\r\n" );
document.write( "of the other factor, (1x2-1x-20). So f(x) factors as\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We can further factor the quadratic in the second parentheses:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The zeros of f(x) are found by setting each factor = 0\r\n" );
document.write( "\r\n" );
document.write( "x+1=0 ; x-5=0; x+4=0\r\n" );
document.write( " x=-1; x=5 x=-4\r\n" );
document.write( "\r\n" );
document.write( "The graph shows that these three zeros are at the 3 x-intercepts:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "