document.write( "Question 1182622: please help me solve \r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( "5x+y=2 \n" );
document.write( "
Algebra.Com's Answer #812706 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Your starting equations are\r\n" ); document.write( "\r\n" ); document.write( " 25x^2 - y^2 = 36 (1)\r\n" ); document.write( "\r\n" ); document.write( " 5x + y = 2 (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "This system of two equations (one equation of the degree 2 and the other of the degree 1) is very special.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Although one of the starting equations is of the degree 2, the system can be reduced to the system \r\n" ); document.write( "of two LINEAR equations, which can be EASILY solved.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The first equation admits factoring\r\n" ); document.write( "\r\n" ); document.write( " (5x - y)*(5x + y) = 36 (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In this factored equation, we can replace (5x + y) by the value of 2, based on equation (2).\r\n" ); document.write( "Doing it, we transform equation (3) to the form\r\n" ); document.write( "\r\n" ); document.write( " 2*(5x - y) = 36, \r\n" ); document.write( "\r\n" ); document.write( "or\r\n" ); document.write( "\r\n" ); document.write( " 5x - y = 18 (4)\r\n" ); document.write( "\r\n" ); document.write( "(where 18 = 36/2).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus from the original non-linear system of equation, we get the linear system\r\n" ); document.write( "\r\n" ); document.write( " 5x - y = 18 (4)\r\n" ); document.write( "\r\n" ); document.write( " 5x + y = 2 (5)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The system of linear equations (4), (5) is EQUIVALENT to the nonlinear system of equations (1), (2).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To solve equations (4), (5), use the ELIMINATION method and add equations (4) and (5). You will get\r\n" ); document.write( "\r\n" ); document.write( " 10x = 18 + 2 = 20\r\n" ); document.write( "\r\n" ); document.write( " x = 20/10 = 2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To find y, substitute the found value x= 2 into equation (5). You will get\r\n" ); document.write( "\r\n" ); document.write( " 5*2 + y = 2, y = 2 - 10 = -8.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus the original system of equations (1), (2) has a UNIQUE solution (x,y) = (2,-8).\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The fact that the solution is unique tells us that the straight line, defined by equation (2), \r \n" ); document.write( "\n" ); document.write( "is tangent to the hyperbola defined by equation (1).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |