document.write( "Question 1182579: Solve the system by using Elimination Method:
\n" );
document.write( "1. 3x² + y² = 21
\n" );
document.write( " 4x² - 2y² = -2 \n" );
document.write( "
Algebra.Com's Answer #812655 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Solve the system by using Elimination Method: \n" ); document.write( "1. 3x² + y² = 21 \n" ); document.write( "4x² - 2y² = -2 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Your starting equations are\r\n" ); document.write( "\r\n" ); document.write( " 3x^2 + y^2 = 21 (1)\r\n" ); document.write( "\r\n" ); document.write( " 4x^2 - 2y^2 = -2 (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Multiply equation (1) by 2 (both sides). Keep equation (2) as is\r\n" ); document.write( "\r\n" ); document.write( " 6x^2 + 2y^2 = 42 (1')\r\n" ); document.write( "\r\n" ); document.write( " 4x^2 - 2y^2 = -2 (2')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now add equations (1') and (2'). The terms \" 2y^2 \" and \" -2y^2 \" will cancel each other (elimination),\r\n" ); document.write( "and you will get single equation for one unknown x, only:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 6x^2 + 4x^2 = 42 + (-2)\r\n" ); document.write( "\r\n" ); document.write( " 10x^2 = 40\r\n" ); document.write( "\r\n" ); document.write( " x^2 = 40/10 = 4\r\n" ); document.write( "\r\n" ); document.write( " x =\r \n" ); document.write( "\n" ); document.write( "Solved and explained in all details.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First equation of the given system represents an ellipse.\r \n" ); document.write( "\n" ); document.write( "Second equation of the given system represents a hyperbola, having two separate branches.\r \n" ); document.write( "\n" ); document.write( "Four solutions represent four intersection points of these figures.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If you want to see many other similar (and different) problems solved, look into the lesson\r \n" ); document.write( "\n" ); document.write( " - Solving systems of algebraic equations of degree 2 \r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Happy learning (!)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |