document.write( "Question 1181501: Check that (2 + i) is a root of (z^4) + (2(z^3)) - (9(z^2)) - 10z + 50 = 0. What are the remaining 3 roots? \n" ); document.write( "
Algebra.Com's Answer #811414 by ikleyn(52794)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Check that (2 + i) is a root of (z^4) + (2(z^3)) - (9(z^2)) - 10z + 50 = 0. What are the remaining 3 roots?
\n" ); document.write( "~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            Yes, from the first glance,  it is almost impregnable fortress.\r
\n" ); document.write( "\n" ); document.write( "            Let apply a military ruse.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Our polynomial is with real  ( even with integer (!) )  coefficients.\r\n" );
document.write( "\r\n" );
document.write( "Hence, if (2+i) is a root, then (2-i) is a root, too (!)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If so, then our polynomial must be divisible by  (z-(2+i))*(z-(2-i)) = ((z-2)-i)*((z-2)-i) = (z-2)^2 + 1 = z^2 - 2z +5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Lets make long division to check if it is TRUE:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"%28z%5E4+%2B+2z%5E3+-9z%5E2+-+10z+%2B+50%29%2F%28z%5E2+-+2z+%2B+5%29\" = \"z%5E2+%2B+6z+%2B+10%29\"     with NO REMAINDER (!)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we checked that the given polynomial is a multiple of the polynomial z^2 - 2z + 5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It means that (2+i) REALLY is a root of the given polynomial (without direct calculations (!))\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    +------------------------------------------------------------------------------------------------+\r\n" );
document.write( "    |    So, we know now that                                                                        |\r\n" );
document.write( "    |                                                                                                |\r\n" );
document.write( "    |        (2+i) really is the root of the given polynomial;                                       |\r\n" );
document.write( "    |        (2-i) is the other root;                                                                |\r\n" );
document.write( "    |        one factor to the given polynomial is  z^2 - 2z + 5  with the roots  (2+i) and (2-i);   |\r\n" );
document.write( "    |        the other factor is the polynomial  z^2 +6z + 10.                                       |\r\n" );
document.write( "    +------------------------------------------------------------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "At this point, the last step to do is to find the roots of the quadratic polynomial  z^2 + 6z + 10.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Apply the quadratic formula to get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "        \"z%5B1%2C2%5D\" = \"%28-6+%2B-+sqrt%286%5E2+-+4%2A10%29%29%2F2\" = \"%28-6+%2B-+sqrt%28-4%29%29%2F2\" = \"%28-6+%2B-+2i%29%2F2\" = -3 +- i.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The problem is just solved in full.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We checked and proved that 2+i is the root.\r\n" );
document.write( "\r\n" );
document.write( "From it, we concluded that 2-i is the root, too.\r\n" );
document.write( "\r\n" );
document.write( "And finally, we found two remaining roots  -3+i  and  -3-i.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved, answered, carefully explained and totally completed.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "

            T R I U M P H     (!)

\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "//////////////\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In his post,  tutor @greenestamps writes  (cited)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "    In the hopes of making the problem easier, we can, as the other tutor did, assume (\"hope\") that the polynomial has real coefficients.\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I want to  HIGHLIGHT  that it is not an assumption:  the given polynomial  REALLY  has integer  (hence,  real)  coefficients.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It is not an assumption:  it is a  FACT.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );