document.write( "Question 1180823: When k is a constant, find k for which the length of perpendicular dropped from point (2, 1) to line kx + y + 1 = 0 is √3. \r
\n" ); document.write( "\n" ); document.write( "Note: Can you please show your full solution? Thank you!
\n" ); document.write( "

Algebra.Com's Answer #810619 by ikleyn(52810)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "When k is a constant, find k for which the length of perpendicular dropped from point (2, 1) to line kx + y + 1 = 0 is √3.
\n" ); document.write( "Note: Can you please show your full solution? Thank you!
\n" ); document.write( "~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To make the solution easier, I re-formulate the problem in  THIS  EQUIVALENT  WAY:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "     Find the coefficient \"k\" such that the line  kx + y + 1 = 0 \r\n" );
document.write( " \r\n" );
document.write( "     is tangent to the circle of the radius  \"sqrt%283%29\"  centered at the point (2,1)\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                    Solution\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "The standard form equation of the circle is\r\n" );
document.write( "\r\n" );
document.write( "    \"%28x-2%29%5E2\" + \"%28y-1%29%5E2\" = 3.           (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The equation of the line is\r\n" );
document.write( "\r\n" );
document.write( "    y = -kx - 1.                      (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Substitute the equation (2) into equation (1), replacing y in the equation (1).\r\n" );
document.write( "\r\n" );
document.write( "Doing this way, you will get then a single equation for only one unknown x\r\n" );
document.write( "    \r\n" );
document.write( "    \"%28x-2%29%5E2\" + \"%28%28-kx-1%29-1%29%5E2\" = 3     (3)\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "    \"%28x-2%29%5E2\" + \"%28kx%2B2%29%5E2\" = 3.          (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The idea of the solution to the problem is to reduce equation (4) to standard form quadratic equation\r\n" );
document.write( "and then to find the value of \"k\" from the condition that this equation has ONLY ONE real solution\r\n" );
document.write( "(which is equivalent to the fact that the line(2) and the circle (1) have ONLY ONE common point).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we simplify equation (4) step by step\r\n" );
document.write( "\r\n" );
document.write( "    x^2 - 4x + 4 + k^2x^2 + 4kx + 4 = 3\r\n" );
document.write( "\r\n" );
document.write( "    x^2(1+k^2) - 4x(1-k) + 5 = 0.       (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we will find \"k\" from the condition that the discriminant of equation (5) is equal to zero.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The discriminant  d  is\r\n" );
document.write( "\r\n" );
document.write( "    d = b^2 - 4ac = \"%28-4%281-k%29%29%5E2\" - \"4%2A5%2A%281%2Bk%5E2%29\" = \"16%281-k%29%5E2\" - \"20%281%2Bk%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The condition d = 0  is\r\n" );
document.write( "\r\n" );
document.write( "    \"16%281-k%29%5E2\"    = \"20%281%2Bk%5E2%29\"\r\n" );
document.write( "\r\n" );
document.write( "    4(1-k)^2       = 5(1+k^2)\r\n" );
document.write( "\r\n" );
document.write( "    4 - 8k + 4k^2  = 5 + 5k^2\r\n" );
document.write( "\r\n" );
document.write( "    k^2 + 8k + 1 = 0\r\n" );
document.write( "\r\n" );
document.write( "    \"k%5B1%2C2%5D\" = \"%28-8+%2B-+sqrt%288%5E2+-+4%2A1%29%29%2F2\" = \"%28-8+%2B-+sqrt%2860%29%29%2F2\" = \"-4+%2B-+sqrt%2815%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, there are 2 (two, TWO) values for k:  \"k%5B1%5D\" = \"-4+%2B+sqrt%2815%29%29\"  and  \"k%5B2%5D\" = \"-4+-+sqrt%2815%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  There are two solutions for \"k\" :  \"k%5B1%5D\" = \"-4+%2B+sqrt%2815%29%29\"  and  \"k%5B2%5D\" = \"-4+-+sqrt%2815%29\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved, answered and carefully explained in all details.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "//////////////\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Do not forget to post your  \"THANKS\"  to me for my teaching.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );