document.write( "Question 1180775: Find the maximum values of the function f(x,y,z)=x^2y^2z^2 subject to the constraint x^2+y^2+z^2=196.
\n" ); document.write( "Maximum value is:
\n" ); document.write( "My anwer is = 27/7529536 but it's wrong.
\n" ); document.write( "

Algebra.Com's Answer #810564 by ikleyn(52835)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find the maximum values of the function f(x,y,z) = x^2y^2z^2 subject to the constraint x^2+y^2+z^2 = 196.
\n" ); document.write( "~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "By analogy with the well known  AM-GM inequality (\"Arithmetic Mean - Geometric Mean inequality\") for two variables \"a\" and \"b\"\r\n" );
document.write( "\r\n" );
document.write( "    ab <= \"%28%28a%2Bb%29%2F2%29%5E2\",         (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "there is AM-GM inequality for three variables \"a\", \"b\" and \"c\"\r\n" );
document.write( "\r\n" );
document.write( "    abc <= \"%28%28a+%2B+b+%2B+c%29%2F3%29%5E3\".      (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Inequalities (1) and (2) are valid for any two and three variables, respectively, that are real non-negative numbers.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    In inequalities (1) and (2), equalities are achieved if and only if  a = b  (for (1))  or  a = b = c (for (2)).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Apply inequality (2), taking  \r\n" );
document.write( "\r\n" );
document.write( "    a = x^2,  b = y^2,  c = z^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You will get\r\n" );
document.write( "\r\n" );
document.write( "    x^2*y^2*z^2 <= \"%28%28x%5E2+%2B+y%5E2+%2B+z%5E2%29%2F3%29%5E3\" = \"%28196%2F3%29%5E3\" = \"196%5E3%2F3%5E3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the maximum value of  x^2*y^2*z^2,  under the constraint  x^2+y^2+z^2 = 196  is  \"%28196%2F3%29%5E3\" = \"7529536%2F27\".    ANSWER\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is achieved when  x^2 = y^2 = z^2 = \"196%2F3\",  i.e.  x = y = z = +/- \"sqrt%28196%2F3%29\" = 8.082904  (rounded).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In all, there are 8 points on the 3D sphere surface  x^2 + y^ + z^2 = 196,\r\n" );
document.write( "where the maximum value of x^2*y^2*z^2 is achieved - one such point in each octant.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "///////////////\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Do not forget to post your  \"THANKS\"  to me for my teaching.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );