document.write( "Question 1179832: If f(1)=3 and f(n)=ā4f(nā1) then find the value of f(5). \n" ); document.write( "
Algebra.Com's Answer #809427 by ikleyn(52790)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "If f(1)=3 and f(n)=ā4f(nā1) then find the value of f(5). \n" ); document.write( "~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "f(2) = according to the formula = -4*f(1) = -4*3 = - 12.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "f(3) = -4*f(2) = -4*(-12) = 48.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "f(4) = -4*f(3) = -4*48 = -192.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "f(5) = -4*f(4) = -4*(-192) = 768. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "The problem is just solved and the answer is obtained, so the assignment is completed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " For your better understanding, you must learn two things.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "One thing is that you have a recursive (or recurrent) formula, so you can move forward, using it, as far as you want.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Each next step is easy and uses the values, that you just obtained in your previous steps.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The other thing is that this simple recursive formula determines nothing else as the GEOMETRIC progression.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "By knowing it, you may wright the EXPLICIT formula for the n-th term:\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " f(n) = \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "/////////////////\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On geometric progressions, see introductory lessons\r \n" ); document.write( "\n" ); document.write( " - Geometric progressions\r \n" ); document.write( "\n" ); document.write( " - The proofs of the formulas for geometric progressions \r \n" ); document.write( "\n" ); document.write( " - Problems on geometric progressions\r \n" ); document.write( "\n" ); document.write( " - Word problems on geometric progressions\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \n" ); document.write( "\"Geometric progressions\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II \n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Do not forget to post your \"THANKS\" to me for my teaching.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |