The solution above is incorrect due to a careless error:\r
\n" );
document.write( "\n" );
document.write( "3𝑥^2 − 2𝑥𝑦 + 𝑦^2 − 1 = 0 and
\n" );
document.write( "𝑥 =(2𝑦+1)/𝑥
\n" );
document.write( "x^2 = (2y+1)
\n" );
document.write( "3𝑥^2 − 2𝑥𝑦 + 𝑦^2 − 1 = 0
\n" );
document.write( "3(2y+1)^2 -2y(2y+1) -1=0 <--This step is wrong because she omitted the
\n" );
document.write( " y2 term which vitiated the rest.
\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Substitute
for y in:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Multiply through by 4\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "This has no rational zeros, but it has 2 real irrational solutions, which\r\n" );
document.write( "can be approximated by technology. I used a TI-84 graphing calculator.\r\n" );
document.write( "Then I substituted the approximation values of x in
to\r\n" );
document.write( "find y. The approximations of the solutions are:\r\n" );
document.write( "\r\n" );
document.write( "(x,y) ≈ (-0.6564052299,-0.2845660870)\r\n" );
document.write( "\r\n" );
document.write( "(x,y) ≈ (0.40293604482,-0.4188212719) \r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "