document.write( "Question 1178993: Solve the following simultaneous equations: 3𝑥^2 − 2𝑥𝑦 + 𝑦^2 − 1 = 0 and
\n" ); document.write( "𝑥 =(2𝑦+1)/𝑥
\n" ); document.write( ".
\n" ); document.write( "

Algebra.Com's Answer #808503 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
The solution above is incorrect due to a careless error:\r
\n" ); document.write( "\n" ); document.write( "3𝑥^2 − 2𝑥𝑦 + 𝑦^2 − 1 = 0 and
\n" ); document.write( "𝑥 =(2𝑦+1)/𝑥
\n" ); document.write( "x^2 = (2y+1)
\n" ); document.write( "3𝑥^2 − 2𝑥𝑦 + 𝑦^2 − 1 = 0
\n" ); document.write( "3(2y+1)^2 -2y(2y+1) -1=0 <--This step is wrong because she omitted the
\n" ); document.write( " y2 term which vitiated the rest.
\n" ); document.write( "
\r\n" );
document.write( "\"system%283x%5E2+-+2xy+%2B+y%5E2+-+1+=+0%2C+x=%282y%2B1%29%2Fx%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"x+=%282y%2B1%29%2Fx\"\r\n" );
document.write( "\"x%5E2=2y%2B1\"\r\n" );
document.write( "\"x%5E2-1=2y\"\r\n" );
document.write( "\"%28x%5E2-1%29%2F2=y\"\r\n" );
document.write( "\r\n" );
document.write( "Substitute \"%28x%5E2-1%29%2F2\" for y in:\r\n" );
document.write( "\r\n" );
document.write( "\"3x%5E2+-+2xy+%2B+y%5E2+-+1+=+0\"\r\n" );
document.write( "\"3x%5E2+-+2x%28%28x%5E2-1%29%2F2%5E%22%22%29+%2B+%28%28x%5E2-1%29%2F2%5E%22%22%29%5E2+-+1+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "\"3x%5E2+-+x%28x%5E2-1%29+%2B+%28x%5E2-1%29%5E2%2F4%5E%22%22+-+1+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "Multiply through by 4\r\n" );
document.write( "\r\n" );
document.write( "\"12x%5E2+-+4x%28x%5E2-1%29+%2B+%28x%5E2-1%29%5E2+-+4+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "\"12x%5E2+-+4x%5E3%2B4x+%2B+x%5E4-2x%5E2%2B1+-+4+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4-4x%5E3+%2B+10x%5E2%2B4x-3+=+0\"\r\n" );
document.write( "\r\n" );
document.write( "This has no rational zeros, but it has 2 real irrational solutions, which\r\n" );
document.write( "can be approximated by technology. I used a TI-84 graphing calculator.\r\n" );
document.write( "Then I substituted the approximation values of x in \"%28x%5E2-1%29%2F2=y\" to\r\n" );
document.write( "find y. The approximations of the solutions are:\r\n" );
document.write( "\r\n" );
document.write( "(x,y) ≈ (-0.6564052299,-0.2845660870)\r\n" );
document.write( "\r\n" );
document.write( "(x,y) ≈ (0.40293604482,-0.4188212719) \r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );