document.write( "Question 1178729: Let r, s, and t be the roots of the equation x^3 - 2x + 1 = 0 in some order. What is the maximal value of r^3 - s- t? \n" ); document.write( "
Algebra.Com's Answer #808108 by ikleyn(52786)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Let r, s, and t be the roots of the equation x^3 - 2x + 1 = 0 in some order. \n" ); document.write( "What is the maximal value of r^3 - s- t? \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The solution in the post by @MathLover1 is not sufficient.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " I came to bring the correct solution.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "First, you need to read, to interpret and to understand the condition correctly.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " +------------------------------------------------------------------------------------+\r\n" ); document.write( " | The problems asks to find the maximal value of the expression of r^3 - s - t |\r\n" ); document.write( " | |\r\n" ); document.write( " | over ALL POSSIBLE PERMUTATIONS of the roots r, s and t. |\r\n" ); document.write( " +------------------------------------------------------------------------------------+\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To find the value of r^3 - s - t for only one possible permutation, as @MathLover1 does,\r\n" ); document.write( "IS NOT ENOUGHT to solve the problem.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now, if r is one of the roots, then r^3 - 2r + 1 = 0, which implies\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " r^3 = 2r - 1 and further r^3 - s - t = (2r-1) - s - t = 3r - (r + s + t) - 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The sum of the roots (r + s + t) is the coefficient at x^2 of the original equation, taken with\r\n" ); document.write( "the opposite sign (the Vieta's theorem).\r\n" ); document.write( "\r\n" ); document.write( "In our case, this coefficient is zero; therefore\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " r^3 - s - t = 3r - (r + s + t) - 1 = 3r - 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "THEREFORE, the expression r^3 - s - t is maximal when 3r is maximal, or, equivalently, \r\n" ); document.write( "when the root \"r\" is maximal of the three roots.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The roots of the equation x^3 - 2x + 1 = 0 are 1,\r \n" ); document.write( "\n" ); document.write( "Solved (correctly).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |