document.write( "Question 110760: Hello can you answer these questions for me1\r
\n" ); document.write( "\n" ); document.write( "1. Factor
\n" ); document.write( " x^2-3x-18\r
\n" ); document.write( "\n" ); document.write( "2. Factor
\n" ); document.write( " 2y^2+8y+9y+36\r
\n" ); document.write( "\n" ); document.write( "3. Factor
\n" ); document.write( " w^2-81v^2\r
\n" ); document.write( "\n" ); document.write( "4. Factor
\n" ); document.write( " 5x^2+23xy+12y^2
\n" ); document.write( "

Algebra.Com's Answer #80781 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
#1\r
\n" ); document.write( "\n" ); document.write( "\"Factor x^2-3x-18\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "
Solved by pluggable solver: Factoring using the AC method (Factor by Grouping)


Looking at the expression \"x%5E2-3x-18\", we can see that the first coefficient is \"1\", the second coefficient is \"-3\", and the last term is \"-18\".



Now multiply the first coefficient \"1\" by the last term \"-18\" to get \"%281%29%28-18%29=-18\".



Now the question is: what two whole numbers multiply to \"-18\" (the previous product) and add to the second coefficient \"-3\"?



To find these two numbers, we need to list all of the factors of \"-18\" (the previous product).



Factors of \"-18\":

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to \"-18\".

1*(-18) = -18
2*(-9) = -18
3*(-6) = -18
(-1)*(18) = -18
(-2)*(9) = -18
(-3)*(6) = -18


Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-3\":



\n" ); document.write( "
First NumberSecond NumberSum
1-181+(-18)=-17
2-92+(-9)=-7
3-63+(-6)=-3
-118-1+18=17
-29-2+9=7
-36-3+6=3




From the table, we can see that the two numbers \"3\" and \"-6\" add to \"-3\" (the middle coefficient).



So the two numbers \"3\" and \"-6\" both multiply to \"-18\" and add to \"-3\"



Now replace the middle term \"-3x\" with \"3x-6x\". Remember, \"3\" and \"-6\" add to \"-3\". So this shows us that \"3x-6x=-3x\".



\"x%5E2%2Bhighlight%283x-6x%29-18\" Replace the second term \"-3x\" with \"3x-6x\".



\"%28x%5E2%2B3x%29%2B%28-6x-18%29\" Group the terms into two pairs.



\"x%28x%2B3%29%2B%28-6x-18%29\" Factor out the GCF \"x\" from the first group.



\"x%28x%2B3%29-6%28x%2B3%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



\"%28x-6%29%28x%2B3%29\" Combine like terms. Or factor out the common term \"x%2B3\"



===============================================================



Answer:



So \"x%5E2-3%2Ax-18\" factors to \"%28x-6%29%28x%2B3%29\".



In other words, \"x%5E2-3%2Ax-18=%28x-6%29%28x%2B3%29\".



Note: you can check the answer by expanding \"%28x-6%29%28x%2B3%29\" to get \"x%5E2-3%2Ax-18\" or by graphing the original expression and the answer (the two graphs should be identical).


\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "#2 \r
\n" ); document.write( "\n" ); document.write( "\"Factor 2y^2+8y+9y+36\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2y%5E2%2B8y%2B9y%2B36\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282y%5E2%2B8y%29%2B%289y%2B36%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2y%28y%2B4%29%2B9%28y%2B4%29\" Factor out the GCF of \"2y\" out of the first group. Factor out the GCF of \"9\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282y%2B9%29%28y%2B4%29\" Since we have a common term of \"y%2B4\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2y%5E2%2B8y%2B9y%2B36\" factors to \"%282y%2B9%29%28y%2B4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "#3\r
\n" ); document.write( "\n" ); document.write( "\"Factor w^2-81v^2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"w%5E2-81v%5E2\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let \"A%5E2=w%5E2\" and \"B%5E2=81v%5E2\". So we get this:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"w%5E2-81v%5E2=A%5E2-B%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"A%5E2=w%5E2\", A can be solved for:\r
\n" ); document.write( "\n" ); document.write( "\"sqrt%28A%5E2%29=sqrt%28w%5E2%29\" Take the square root of both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"A=w\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"B%5E2=81v%5E2\", B can be solved for:\r
\n" ); document.write( "\n" ); document.write( "\"sqrt%28B%5E2%29=sqrt%2881v%5E2%29\" Take the square root of both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"B=9v\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since we have a difference of squares, we can factor it like this:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"A%5E2-B%5E2=%28A%2BB%29%28A-B%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace A and B\r
\n" ); document.write( "\n" ); document.write( "\"w%5E2-81v%5E2=%28w%2B9v%29%28w-9v%29\" Plug in \"A=w\" and \"B=9v\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the expression\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"w%5E2-81v%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "factors to\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28w%2B9v%29%28w-9v%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice that if you foil the factored expression, you get the original expression. This verifies our answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "#4 \r
\n" ); document.write( "\n" ); document.write( "\"Factor 5x^2+23xy+12y^2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"5x%5E2%2B7xy-12y%5E2\" we can see that the first term is \"5x%5E2\" and the last term is \"-12y%5E2\" where the coefficients are 5 and -12 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 5 and the last coefficient -12 to get -60. Now what two numbers multiply to -60 and add to 7? Let's list all of the factors of -60:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -60:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,10,12,15,20,30,60\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -60\r
\n" ); document.write( "\n" ); document.write( "(1)*(-60)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-30)\r
\n" ); document.write( "\n" ); document.write( "(3)*(-20)\r
\n" ); document.write( "\n" ); document.write( "(4)*(-15)\r
\n" ); document.write( "\n" ); document.write( "(5)*(-12)\r
\n" ); document.write( "\n" ); document.write( "(6)*(-10)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(60)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(30)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(20)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(15)\r
\n" ); document.write( "\n" ); document.write( "(-5)*(12)\r
\n" ); document.write( "\n" ); document.write( "(-6)*(10)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 7? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-601+(-60)=-59
2-302+(-30)=-28
3-203+(-20)=-17
4-154+(-15)=-11
5-125+(-12)=-7
6-106+(-10)=-4
-160-1+60=59
-230-2+30=28
-320-3+20=17
-415-4+15=11
-512-5+12=7
-610-6+10=4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -5 and 12 add up to 7 and multiply to -60\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"5x%5E2%2B7xy-12y%5E2\", replace \"7xy\" with \"-5xy%2B12xy\" (notice \"-5xy%2B12xy\" adds up to \"7xy\". So it is equivalent to \"7xy\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%5E2%2Bhighlight%28-5xy%2B12xy%29%2B-12y%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"5x%5E2-5xy%2B12xy-12y%5E2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285x%5E2-5xy%29%2B%2812xy-12y%5E2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%28x-y%29%2B12y%28x-y%29\" Factor out the GCF of \"5x\" out of the first group. Factor out the GCF of \"12y\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285x%2B12y%29%28x-y%29\" Since we have a common term of \"x-y\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5x%5E2-5xy%2B12xy-12y%5E2\" factors to \"%285x%2B12y%29%28x-y%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"5x%5E2%2B7xy-12y%5E2\" factors to \"%285x%2B12y%29%28x-y%29\" (since \"5x%5E2%2B7xy-12y%5E2\" is equivalent to \"5x%5E2-5xy%2B12xy-12y%5E2\")
\n" ); document.write( "
\n" );