document.write( "Question 1177698: Show that the equation of the perpendicular bisector of the points (t,t+1) and (3t,t+3) is y+tx = 2tsquared + t + 2. If this perpendicular bisector passes through the point (5,2),calculate the values of t. \n" ); document.write( "
Algebra.Com's Answer #806795 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
Show that the equation of the perpendicular bisector of the points (t,t+1) and (3t,t+3) is y+tx= 2rsquared + t + t . If this perpendicular bisector passes through the point (5,2), Calculate the values of t.\r
\n" ); document.write( "\n" ); document.write( "(t,t+1) and (3t,t+3)
\n" ); document.write( "slope of line = [(t+3)-(t+1)]/(3t-t)=1/t\r
\n" ); document.write( "\n" ); document.write( "slope of perpendicular bisector = -t ( negative reciprocal)\r
\n" ); document.write( "\n" ); document.write( "mid point =x~ (t+3t)/2 =4t/2 = 2t\r
\n" ); document.write( "\n" ); document.write( "y~ (t+1+t+3)/2 = (2t+4)/2 = (t+2)
\n" ); document.write( "Point 2t,(t+2) and slope = -t
\n" ); document.write( "y=mx+c
\n" ); document.write( "t+2=-t(2t)+c
\n" ); document.write( "t+2 =-2t^2 +c
\n" ); document.write( "c= 2t^2 +t+2
\n" ); document.write( "y= -t(x) +2t^2+t+2
\n" ); document.write( "y+tx = 2t^2+t+2
\n" ); document.write( "(5,2) the point on perpendicular bisector
\n" ); document.write( "plug 5 &2
\n" ); document.write( "2+5t = 2t^2+t+2
\n" ); document.write( "2t^2-4t=0
\n" ); document.write( "2t(t-2)=0
\n" ); document.write( "t =0 OR t=2
\n" ); document.write( "
\n" ); document.write( "
\n" );