Algebra.Com's Answer #806785 by ikleyn(52786)  You can put this solution on YOUR website! . \n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Let's consider this expression\r\n" );
document.write( "\r\n" );
document.write( " a^4 - a^3b + b^4 - ab^3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Transform it this way \r\n" );
document.write( "\r\n" );
document.write( " a^4 - a^3b + b^4 - ab^3 = + = = = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, our starting expression is the product of two quadratic polynomials\r\n" );
document.write( "\r\n" );
document.write( " and .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "They both are positively defined; in other words, they never take negative values.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, >= 0 for all values of \"a\" and \"b\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It implies that the original expression is never negative \r\n" );
document.write( "\r\n" );
document.write( " a^4 - a^3b + b^4 - ab^3 >= 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It means that\r\n" );
document.write( "\r\n" );
document.write( " a^4 + b^4 >= a^3b + ab^3,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which is what has to be proved.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "At this point, the proof is completed.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |