document.write( "Question 1177527: The sum of the first 10 terms of an arithmetic progression is 80 and the sum of the next 12 terms is 624. What is the arithmetic progression?\r
\n" );
document.write( "\n" );
document.write( "Thank you \n" );
document.write( "
Algebra.Com's Answer #806582 by jitendra_maths(6)![]() ![]() You can put this solution on YOUR website! Let first term = a and common difference = d \n" ); document.write( "S_10=10/2 [2a+(10-1)d]=80 \n" ); document.write( " (2a+9d)=16 ---------------- (i)\r \n" ); document.write( "\n" ); document.write( "Also sum of next 12 terms is 624 \n" ); document.write( "Hence sum of first 22 terms = 624+80 = 704 \n" ); document.write( "Therefore, S_22= 22/2 [2a+(22-1)d]=704 \n" ); document.write( " 2a + 21d = 64 ------------------------(ii) \n" ); document.write( " On solving (i) and (ii) \n" ); document.write( "(2a + 21d) - (2a+9d) = 704 - 16 \n" ); document.write( "12d = 48 \n" ); document.write( "d = 4 \n" ); document.write( "from equation (i) 2a + 36 = 16 \n" ); document.write( "a= -10\r \n" ); document.write( "\n" ); document.write( "Hence required AP is \n" ); document.write( "-10, -6, -2, 2, 6, 10, 12, ………….. \n" ); document.write( " \n" ); document.write( " |