document.write( "Question 801327: One interger is 5 less than another. The sum of their squares is 97. Find the intergers. \n" ); document.write( "
Algebra.Com's Answer #806082 by CubeyThePenguin(3113)\"\" \"About 
You can put this solution on YOUR website!
x = y - 5
\n" ); document.write( "x^2 + y^2 = 97\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Substitute x = y - 5 into the second equation.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(y - 5)^2 + y^2 = 97
\n" ); document.write( "y^2 - 10y + 25 + y^2 = 97
\n" ); document.write( "2y^2 - 10y - 72 = 0
\n" ); document.write( "y^2 - 5y - 36 = 0
\n" ); document.write( "(y - 9)(y + 4) = 0
\n" ); document.write( "y = 9, y = -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The integers are (x, y) = (4, 9) and (-9, -4)
\n" ); document.write( "
\n" );