document.write( "Question 1177276: During inspection of the continuous process of making
\n" );
document.write( "large rolls of floor coverings, 0.5 imperfections are
\n" );
document.write( "spotted per minute on average. Use the Poison distribution
\n" );
document.write( "to find the probabilities
\n" );
document.write( "(a) one imperfection in 4 minutes
\n" );
document.write( "(b) at least two in 8 minutes
\n" );
document.write( "(c) at most one in 10 minutes. \n" );
document.write( "
Algebra.Com's Answer #806048 by ewatrrr(24785)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Hi\r\n" ); document.write( "Poisson Distribution: 0.5per minute 0r 2/4min 0r 4/8min or 5/10min\r\n" ); document.write( "Using Ti or similarly aa inexpensive calculator like a Casio fx-115 ES plus \r\n" ); document.write( "4 min\r\n" ); document.write( "P(x = 1) = poissonpdf(mean, x-value)= poissonpdf( 2,1) = .2707\r\n" ); document.write( "8min\r\n" ); document.write( "P(x ≥ 2) = 1 - P(x ≤ 1) = 1 - poissonpdf( 4,1) = 1- .0733 = .9267\r\n" ); document.write( "10min\r\n" ); document.write( "P(x ≤ 1) = = poissonpdf( 5,1) = .0337\r\n" ); document.write( "Or\r\n" ); document.write( "One may use the Equation: \r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |