document.write( "Question 1177177: 3- The probability of a typographical error on any page is 0.002. If a textbook contains 1,000 pages, using Poisson probability table compute the probability there are:
\n" ); document.write( "a. No typos on a page b. At least 2 typos on a page
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #805450 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "Hi\r\n" );
document.write( "Poisson Distribution:\r\n" );
document.write( "\"p%28x%29+=+%28mu%5Ex%2Fx%21%29%2Ae%5E%28-mu%29\"\r\n" );
document.write( "a. \"p%280%29+=+%28.002%5E0%2F0%21%29%2Ae%5E%28-.002%29\" = .998\r\n" );
document.write( "\r\n" );
document.write( "Or Using TI or similarly an inexpensive calculator like a Casio fx-115 ES plus \r\n" );
document.write( "P(7) = poissonpdf(mean, x-value) = poissonpdf(.002, 0) = .998\r\n" );
document.write( "\r\n" );
document.write( "b. P(x ≥ 2) = 1 - P( x ≤ 1) = 1 - P(0) + P(1) = 1 - .998 + .001996  = 0\r\n" );
document.write( "or\r\n" );
document.write( "1 - poissoncdf(.002, 1)  = 1 -0.9999980027 = basically 0\r\n" );
document.write( "Wish You the Best in your Studies.\r\n" );
document.write( "
\n" ); document.write( "
\n" );