document.write( "Question 1176891: (1/sqrt(1)) + (1/sqrt(2)) + (1/sqrt(3)) + ... + (1/sqrt(n)) >= sqrt(n), for all n E Z^+\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Assume by the inductive step that:\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(1/sqrt(1)) + (1/sqrt(2)) + (1/sqrt(3)) + ... + (1/sqrt(k)) >= sqrt(k), for some k E Z^+\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Which of the following is a correct way of ending this proof?\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "a. (1/sqrt(1)) + (1/sqrt(2)) + ... + (1/sqrt(k)) >= sqrt(k) + (1/sqrt(k+1)) = sqrt(k+1) +1 >= sqrt(k+1)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "b. (1/sqrt(1)) + (1/sqrt(2)) + ... + (1/sqrt(k)) >= sqrt(k+1) + (1/sqrt(k+1)) + (1/sqrt(k+1)) >= sqrt(k+1)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "c. (1/sqrt(1)) + (1/sqrt(2)) + ... + (1/sqrt(k+1)) >= sqrt(k) + (1/sqrt(k+1)) = (sqrt(k)sqrt(k+1)+1)/sqrt(k+1)) >= (sqrt(k)sqrt(k)+1)/sqrt(k+1)) >= ((k+1)/sqrt(k+1)) = sqrt(k+1)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "d. (1/sqrt(1)) + (1/sqrt(2)) + ... + (1/sqrt(k+1)) >= sqrt(k) + (1/sqrt(k)) = ((sqrt(k)sqrt(k+1))/sqrt(k)) >= ((k+1)/(sqrt(k+1))) = sqrt(k+1) \n" );
document.write( "
Algebra.Com's Answer #804908 by ikleyn(52778)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The proof (c) corresponds to the standard logic of the Mathematical induction method and corresponds \r \n" ); document.write( "\n" ); document.write( "to the logic of the proof the associated inequality.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==========\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "About the method of Mathematical induction, you may read from the lessons\r \n" ); document.write( "\n" ); document.write( " - Mathematical induction and arithmetic progressions\r \n" ); document.write( "\n" ); document.write( " - Mathematical induction and geometric progressions\r \n" ); document.write( "\n" ); document.write( " - Mathematical induction for sequences other than arithmetic or geometric\r \n" ); document.write( "\n" ); document.write( " - Proving inequalities by the method of Mathematical Induction\r \n" ); document.write( "\n" ); document.write( " - OVERVIEW of lessons on the Method of Mathematical induction\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lesson is the part of this online textbook under the topic \n" ); document.write( "\"Method of Mathematical induction\".\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II \n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |