document.write( "Question 141137: If three numbers a,b,c are in arithmetic progression then:
\n" );
document.write( "a^2(b+c),b^2(c+a) and c^2(a+b) are in :\r
\n" );
document.write( "\n" );
document.write( "(a)A.P (b)G.P (c)H.P (d)A.G.P. \n" );
document.write( "
Algebra.Com's Answer #804148 by CubeyThePenguin(3113)![]() ![]() You can put this solution on YOUR website! a, b, c ---> a-d, a, a+d\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a^2(b+c) = (a-d)^2 * (2a + d) = 2a^3 - 3a^2d + d^3 \n" ); document.write( "b^2(c+a) = a^2 * (2a) = 2a^3 \n" ); document.write( "c^2(b+a) = (a+d)^2 * (2a - d) = 2a^3 + 3a^2d - d^3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is another arithmetic sequence with common difference 3a^2d - d^3. \n" ); document.write( " |