document.write( "Question 110328This question is from textbook Fundamentals of Alg and Trig
\n" ); document.write( ": Is there anyone that can help me with this problem? I have worked almost the entire thing but am comfused toward the end.\r
\n" ); document.write( "\n" ); document.write( "1. Find all values of K such that f(x)is divisible bt the given linear poly.
\n" ); document.write( "f(x) k^2x^3-4kx+3; x-1\r
\n" ); document.write( "\n" ); document.write( "This is what I did:
\n" ); document.write( "f(1)= k^2(1)^3-4k(1)+3
\n" ); document.write( "f(1)= k^2-4k+3
\n" ); document.write( "(k+1)(k-4)\r
\n" ); document.write( "\n" ); document.write( "THis factoring isn't working. I have made a mistake somewhere but I can;t tell where. Please help.
\n" ); document.write( "Thanks
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #80395 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Find all values of K such that f(x)is divisible bt the given linear poly.
\n" ); document.write( "f(x)= k^2x^3-4kx+3; x-1
\n" ); document.write( "-----------------------------
\n" ); document.write( "The Remainder Theorem says guarantees that (x-a) is a factor of
\n" ); document.write( "f(x) if f(a)=0.
\n" ); document.write( "-----------------
\n" ); document.write( "You are dividing by (x-1).
\n" ); document.write( "Find f(1) = k^2(1^3)-4k(1)+3
\n" ); document.write( "f(1)= k^2-4k+3
\n" ); document.write( "------------
\n" ); document.write( "Solve k^2-4k+3=0
\n" ); document.write( "(k-3)(k-1)=0
\n" ); document.write( "k=3 or k=1.
\n" ); document.write( "---------------
\n" ); document.write( "Those are the values of k which will guarantee f(x) being divisible
\n" ); document.write( "by (x-1)
\n" ); document.write( "===============
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" ); document.write( "
\n" );